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Model (Calderón problem)

• Introduced in [Calderón, 1980]

• div(σ∇u) = 0 in Ω, u = g on ∂Ω

• Reconstruct σ from σ∂νu ∂Ω

• Ill-posed nonlinear inverse problem

[Sylvester and Uhlmann, 1987, Alessandrini, 1988, Alessandrini and Vessella, 2005]

This talk

Investigate landscape

of σ 7→ ∥Λ(σ)− y∥22
in radial setting
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Radial setting

σ = σ1

σ = σ2

σ = σ3

σ = σ4

r0 = 1
r1

r2
r3

Forward map [Siltanen et al., 2000]

• If gj (θ) = cos(jθ) then σ∂νu ∂Ω = λj (σ)gj .

• Define Λ : σ ∈ Rn 7→ [λj (σ)]1≤j≤m ∈ Rm.

• Evaluate Λ by solving linear system (+ derivatives via autodiff)
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Ill-posedness

Setting

• Draw σ̂, σ† such that ∥Λ(σ̂)− Λ(σ†)∥∞ ≤ 10−15.

• Compute mean error |σ̂i − σ†
i | on each annulus

4



One-dimensional case
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Identifiability and absence of bad critical points

Forward map Λ : σ 7→ (λj (σ))1≤j≤m

Conjecture

If m ≥ n, the following holds.

• If Λ(σ) = Λ(σ†) then σ = σ†.

• The unique critical point of σ 7→ ∥Λ(σ)− Λ(σ†)∥22 is σ = σ†.

Partial results

• Full proof for n = 2 (proof of case m > 2 by Irène Waldspurger).

• Partial proof for n > 2 under a numerically verifiable criterion.
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Code: rpetit.github.io/RadialCalderon.jl

Content

• Implementation of forward map (+ derivatives via autodiff)

• Least squares approach

• Extensive benchmark against [Harrach, 2023] (convex programming)
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Conclusion

Summary

• Mild non-convexity.

• True problem: ill-posedness (+ interaction with nonlinearity).

Perspectives

• Tailored algorithms with better performance?

• Study landscape in noisy regularized setting.

Preprint

On the non-convexity issue in the

radial Calderón problem

arXiv:2507.03379
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